Wireless Dependable IoT/M2M for Disaster Rescue and Healthcare – Reliable Machine Centric Sensing and Controlling
نویسندگان
چکیده
Wireless body area network (BAN) has been researched and developed for ubiquitous and remote medicine and its international standard IEEE802.15.6 was established in February, 2012. In order to find missing victims and sense their vital sign at disaster spots, highly reliable and secure, i.e. dependable BAN can be applicable to a body of robots, cars, UAVs (Unmanned Aerial Vehicle) like drones as well as a human body for dependable machine to machine (M2M) sensing and controlling. Such a M2M network can be called a ‘BAN of Things’ like Internet of Things (IoT). Around disaster areas unexpected obstacles and complicated radio propagation tend to prevent accurate ranging and positioning, and reliable vital data sensing. To perform precise localization and robust data communications by BAN, dependable radio technologies such as Ultra Wide Band (UWB) radio, array antenna and error control codes in physical layer must be jointly optimized with MAC, Network, and application layers. Even after BAN has been developed and standardized globally, regulatory science must adopt it to guarantee the safety, reliability and security and to be compliant to regulations. This paper will introduce research and development, standard and regulatory compliance of dependable wireless BAN for disaster rescue and medical healthcare using UWB ranging and communication. The joint Japan and New Zealand project on remote sensing and controlling multiple UAVs to locate casualties in natural disasters such as earthquakes will be also introduced. The research has two objectives; one being to use UAVs to locate people under rubble, the other to collect information that is contained within the BANs those people is wearing. The new IEEE802.15 international standard group of dependable wireless networks IEEE802.15 IG-Dependability has been chaired by the author (Prof. Ryuji Kohno).
منابع مشابه
Scalable & Reliable IoT Enabled By Dynamic Spectrum Management for M2M in LTE-A
To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) a...
متن کاملGSLHA: Group-based Secure Lightweight Handover Authentication Protocol for M2M Communication
Machine to machine (M2M) communication, which is also known as machine type communication (MTC), is one of the most fascinating parts of mobile communication technology and also an important practical application of the Internet of Things. The main objective of this type of communication, is handling massive heterogeneous devices with low network overheads and high security guarantees. Hence, v...
متن کاملA Mechanism for Reliable Mobility Management for Internet of Things Using CoAP
Under unreliable constrained wireless networks for Internet of Things (IoT) environments, the loss of the signaling message may frequently occur. Mobile Internet Protocol version 6 (MIPv6) and its variants do not consider this situation. Consequently, as a constrained device moves around different wireless networks, its Internet Protocol (IP) connectivity may be frequently disrupted and power c...
متن کاملMachine-to-Machine Communication Architecture as an Enabling Paradigm of Embedded Internet Evolution
In addition to human-to-human (H2H) and machine-to-human (M2H) communications, an emerging technology enabling full mechanical automation that may change living styles is being developed. Communications among machine-type devices are known as machine-to-machine (M2M) communications. Current market penetration and recent predictions confirm that M2M system deployments are increasing exponentiall...
متن کاملGoal programming-based post-disaster decision making for allocation and scheduling the rescue units in natural disaster with time-window
Natural disasters, such as earthquakes, tsunamis, and hurricanes cause enormous harm during each year. To reduce casualties and economic losses in the response phase, rescue units must be allocated and scheduled efficiently, such that it is a key issues in emergency response. In this paper, a multi-objective mix integer nonlinear programming model (MOMINLP) is proposed to minimize sum of weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017